scenari

Intelligenza artificiale con big data, le opportunità concrete per le aziende

Il semplice fatto di avere accesso a grandi serie di dati non è sufficiente per produrre un risultato. La convergenza tra big data e AI è pertanto inevitabile anche per rendere più agili, veloci e intelligenti i processi aziendali. Ecco le possibili applicazioni, le sfide e le implicazioni etiche

30 Lug 2018
Michele Gentili

consulente ICT e Digital transformation - Associate Partner Fatto24,  Responsabile comunicazione - Azione Toscana

intelligence_6383420051

L’intelligenza artificiale e i big data sono due tecnologie in costante crescita, di grande interesse per le aziende di tutti i settori. Tuttavia, il loro vero potenziale rivoluzionario è probabilmente la loro convergenza. Vediamo le possibilità offerte alle aziende dall’unione tra big data e AI.

L’origine dell’intelligenza artificiale

Se quella dei big data rappresenta una tecnologia più nota al “grande pubblico”, anche per la diffusione dell’utilizzo dei social network e per l’evidenza che, soprattutto in quel contesto, sono una fonte inesauribile di informazioni, l’intelligenza artificiale risulta forse meno definibile e non è semplice inquadrarla in un contesto ben circoscritto.

WHITEPAPER
Perchè dovresti sfruttare il CRM per un marketing basato sull'esperienza
CRM
Marketing

Il termine “intelligenza artificiale” fu coniato da John McCarthy in occasione di un seminario presso il Dartmouth College di Hanover (New Hampshire, USA) a cui invitò dieci ricercatori interessati alla teoria degli automi, alle reti neurali e allo studio dell’intelligenza, ma con interessi che spaziavano anche dallo sviluppo di sistemi di ragionamento automatico ai giochi come la dama. Negli anni ’60 e ’70 gli studi sull’intelligenza artificiale erano però ancora confinati al solo ambito accademico. Proprio in quegli anni furono sviluppate anche le prime reti neurali e la logica fuzzy che sono concetti alla base dell’intelligenza artificiale.

AI e Big Data, le principali applicazioni

L’applicazione della tecnologia di AI si è estesa nel corso degli anni a tantissimi settori e già dai primi anni 90 è risultato chiaro che sarebbe stato necessario un fortissimo incremento della potenza di calcolo per poter supportarne la crescita tecnologica ed evitare di relegarla ad applicazioni marginali. Con la nascita del Web 2.0 e l’enorme diffusione di contenuti è risultato evidente come l’interpretazione automatica di quest’ultimi e la possibilità di far decidere in modo autonomo il computer in base ad una valutazione sistematica basata sui dati acquisiti potesse portare a dei vantaggi competitivi evitando sistematicamente l’intervento umano per svolgere determinati compiti.

Le auto a guida autonoma ad esempio, ha sempre avuto un posto speciale nella fantascienza e nell’immaginario collettivo. Oggi la realtà sta recuperando e forse superando l’immaginazione. Dal 2009, molti marchi di lusso hanno incorporato sistemi di assistenza alla guida basati su software di cambio corsia orientato ai dati adattivi. Più recentemente, Tesla ha utilizzato i Big Data e l’Intelligenza Artificiale per creare funzionalità di un vero e proprio sistema di autopilota.

Da parte loro, Nvidia e Google usano l’intelligenza artificiale per realizzare mappe dettagliate in tempo reale utilizzate dai loro veicoli di prova. Il tutto si basa su un apprendimento intelligente di una rete neurale. Anche l’industria del commercio si sta evolvendo e lo sviluppo e il marketing del prodotto sono ora spesso guidati da AI e Big Data. Tutte queste affascinanti innovazioni sono state rese possibili dall’incontro tra potenza di calcolo, big data e intelligenza artificiale.

Presente e futuro delle tecnologie digitali

Il legame dunque, si è reso necessario per trasformare i big data in qualcosa di intelligente che in qualche modo possa “parlare”, predire, con le dovute elaborazioni, portare a prendere delle decisioni praticamente certe. L’intelligenza artificiale è diventata onnipresente soprattutto nelle grandi aziende di tutti i settori, per fare in modo che buona parte del processo decisionale venga supportato da “macchine intelligenti”. È sempre più necessario arrivare a decisioni veloci supportate da valutazioni oggettive e sistemiche e l’analisi e l’elaborazione dei big data è il criterio che guida questa tendenza.

Il semplice fatto di raccogliere o avere accesso a grandi serie di dati non è sufficiente per produrre un risultato.

Ed è proprio per questo che la convergenza tra Big Data e AI è di fatto inevitabile per avere un’automazione del processo decisionale intelligente. Questo consente un elevato aumento dell’agilità e della velocità dei processi aziendali, più intelligenti, più oggettivi che portano ad una maggiore produttività.

Ma non tutti i dati vengono elaborati e analizzati per fornire un supporto decisionale. Uno dei motivi principali è che gran parte delle informazioni è ora archiviata su computer (ma molto spesso non viene analizzata), ma ci sono ancora molte informazioni sulla carta o comunque su supporti destrutturati.

Ognuno di noi ha chiara questa sensazione quando si reca in un ospedale, in un’amministrazione, uno studio medico o qualsiasi attività per rendersi conto che molte informazioni siano ancora archiviate su carta e dunque si perde in partenza la possibilità di analisi del dato al fine di prendere decisioni. La maggior parte delle persone, ma anche delle aziende, non è sufficientemente preparata per l’estrazione della conoscenza e la successiva elaborazione, nonostante un rapido processo decisionale venga oggi richiesto dai mercati per mantenere un vantaggio competitivo.

Big Data e AI, diamo qualche numero

Stiamo generando oggi una quantità di dati che solo qualche anno fa era inimmaginabile. Ogni secondo, l’umanità produce 6.000 tweet, 40.000 ricerche su Google e 2 milioni di email. Entro il 2019, il traffico web globale supererà 2 zettabyte all’anno (tanto per intenderci 1 zettabyte corrisponde a circa 1.000 miliardi di Gigabyte).

D’altro canto, è abbastanza evidente come le aziende devono ancora scoprire come trasformare questi dati in intuizioni sfruttabili.

In effetti, questo compito è impossibile da realizzare utilizzando strumenti di marketing tradizionali o semplici ricerche su Google. Il web è troppo “vasto” è disorganizzato e molte aziende spendono milioni di euro per mescolare fonti di dati e punti di soluzione, che alla fine si traducono solo in un tasso di conversione molto basso. Elaborazioni non efficaci, di solito si traducono nell’inviare il messaggio sbagliato alle persone sbagliate nel momento sbagliato.

Oltre alla larga diffusione di dati, destrutturati ma comunque informazioni testuali e dunque più facilmente interpretabili e associabili tra loro, la vera sfida degli ultimi anni è interpretare dati non strutturati e soprattutto multimediali, come i contenuti di Facebook, i video di YouTube, i post di Instagram che contengono informazioni preziose. Con i recenti progressi nel calcolo cognitivo e nella potenza di elaborazione, le cose stanno cambiando e chi riesce a trarre informazioni utili da questi contenuti riesce ad avere un vantaggio sostanziale sulla concorrenza.

Una forte attenzione è rivolta alle start up del settore e le più promettenti sono oggetto di interesse dei Big del mercato tecnologico.

Elaborazione del linguaggio naturale e marketing

L’elaborazione del linguaggio naturale è un’altra delle tante applicazioni dell’intelligenza artificiale che può esaminare le interazioni tra computer ed esseri umani per estrarre significato dalle conversazioni. Con l’identificazione di alcune parole o frasi, questa tecnologia permette di analizzare i sentimenti verso un brand, un orientamento politico o le preferenze sessuali. È facile intuire quale vantaggio le aziende possano trarre dal poter comunicare il messaggio giusto alle persone giuste, che è il criterio principale dell’ABI.

Se l’azienda vuole sapere cosa dicono le persone sui propri prodotti sui social network, l’elaborazione del linguaggio naturale può esplorare le pubblicazioni sui social media, collegarle a determinati gruppi di consumatori e scoprire cosa sia importante per ogni gruppo. Questo sistema può essere utilizzato per rispondere alle critiche dei consumatori alle recensioni positive ma anche per risolvere i problemi e per migliorare un prodotto.

Machine learning

Al vasto pianeta dell’intelligenza artificiale è riconducibile anche il machine learning che consente ai computer di imparare e agire senza essere programmata in modo esplicito. Questa tecnologia cerca modelli all’interno dei dati per guidare le azioni, tenendo conto del contesto. Il vero ABI richiede modelli dinamici e la macchina di apprendimento li regola automaticamente man mano che emergono nuovi dati.

Ovviamente anche le tecnologie di machine learning sono già ampiamente sfruttate. Facebook, ad esempio, utilizza questa tecnologia per personalizzare il feed delle notizie in base a click e ai “mi piace”. Altre società utilizzano questa tecnologia per prevedere la fedeltà del cliente o il comportamento di acquisto e “predire” le prestazioni di un prodotto o anticiparne i rischi.

Google Now è probabilmente l’app di machine learning più avanzata. Impara le abitudini degli utenti, imitando il loro stile di conversazione, e offrendo suggerimenti intelligenti. Ad esempio, se l’utente deve recarsi in aeroporto per un volo che si svolgerà nei 30 minuti successivi, Google Now può analizzare i ritardi del traffico e pianificare un veicolo Uber, la metropolitana o un taxi in modo da arrivare in tempo.

L’intelligenza artificiale dunque è senza dubbio la tecnologia dominante di inizio XXI secolo. Può trovare ed elaborare i dati inaccessibili agli esseri umani e dettagliarne il significato in modo molto preciso. Può anche “guidare” l’azienda verso il mercato e portarla dritta verso i suoi prossimi clienti. Questa tecnologia sarà il più grande cambiamento del secolo nel campo degli affari in quanto la “rivoluzione” è solo all’inizio.

Big Data, AI ed etica

C’è però anche un problema etico legato all’intelligenza artificiale e ancora molti dubbi devono essere risolti. I sistemi in grado di apprendere autonomamente, responsabili della determinazione di quali big data dovrebbero essere identificati e utilizzati, richiederanno (e stanno richiedendo) la gestione umana, almeno inizialmente. La scelta della fonte e l’identificazione della classe dei dati che servirà come base di analisi è determinante per avere un risultato attendibile. La vastità delle informazioni disponibili porta anche problemi e non solo vantaggi.

È proprio di questi giorni la notizia che Google ha analizzato i dati provenienti da 216.000 pazienti che, per un tempo minimo di 24 ore sono stati ricoverati in ospedale. La scoperta incredibile e sconvolgente è che l’algoritmo, messo a punto, sarebbe in grado di prevedere il giorno esatto della morte, reperendo le informazioni necessarie dalle cartelle cliniche dei pazienti stessi, dai dati ospedalieri e da altre informazioni sanitarie. Questo metodo di apprendimento automatico si serve anche dei parametri vitali dell’individuo oltre che di 46 miliardi di dati anonimi di altri pazienti, forniti in accordo con le Università di Chicago, San Francisco e della California.

Questo fa capire quanto anche il problema etico abbia un risvolto molto importante per l’utilizzo e lo sviluppo di queste tecnologie. Per il momento, l’intelligenza artificiale non è regolata in un modo specifico. Molte persone esprimono preoccupazioni per la sicurezza e certamente questo problema deve essere risolto rapidamente. Modelli altamente sofisticati che possono prendere anche decisioni al posto nostro o comunque supportarle in modo decisivo, ci rendono vulnerabili a molte minacce. Pensiamo a sistemi intelligenti destinati a controllare il traffico, i sistemi sanitari o il mercato azionario, da questo risulta chiaro come sia necessario mettere in atto leggi di governance precise e mirate, magari verticali per ogni settore.

Non c’è dubbio che l’unione tra i Big Data e l’AI porti ad un processo decisionale autonomo e che questa sia la vera sfida per il futuro nel campo tecnologico con cui noi tutti avremo a che fare.

WHITEPAPER
Come gestire la complessità dei dati in tempo reale? Scoprilo in questa guida!
Big Data
Business Intelligence

Speciale PNRR

Tutti
Incentivi
Salute digitale
Formazione
Analisi
Sostenibilità
PA
Sostemibilità
Sicurezza
Digital Economy
CODICE STARTUP
Imprenditoria femminile: come attingere ai fondi per le donne che fanno impresa
DECRETI
PNRR e Fascicolo Sanitario Elettronico: investimenti per oltre 600 milioni
IL DOCUMENTO
Competenze digitali, ecco il nuovo piano operativo nazionale
STRUMENTI
Da Istat e RGS gli indicatori per misurare la sostenibilità nel PNRR
STRATEGIE
PNRR – Piano nazionale di Ripresa e Resilienza: cos’è e novità
FONDI
Pnrr, ok della Ue alla seconda rata da 21 miliardi: focus su 5G e banda ultralarga
GREEN ENERGY
Energia pulita: Banca Sella finanzia i progetti green incentivati dal PNRR
TECNOLOGIA SOLIDALE
Due buone notizie digitali: 500 milioni per gli ITS e l’inizio dell’intranet veloce in scuole e ospedali
INNOVAZIONE
Competenze digitali e InPA cruciali per raggiungere gli obiettivi del Pnrr
STRATEGIE
PA digitale 2026, come gestire i fondi PNRR in 5 fasi: ecco la proposta
ANALISI
Value-based healthcare: le esperienze in Italia e il ruolo del PNRR
Strategie
Accordi per l’innovazione, per le imprese altri 250 milioni
Strategie
PNRR, opportunità e sfide per le smart city
Strategie
Brevetti, il Mise mette sul piatto 8,5 milioni
Strategie
PNRR e opere pubbliche, la grande sfida per i Comuni e perché bisogna pensare digitale
Formazione
Trasferimento tecnologico, il Mise mette sul piatto 7,5 milioni
Strategie
PSN e Strategia Cloud Italia: a che punto siamo e come supportare la PA in questo percorso
Dispersione idrica
Siccità: AI e analisi dei dati possono ridurre gli sprechi d’acqua. Ecco gli interventi necessari
PNRR
Cloud, firmato il contratto per l’avvio di lavori del Polo strategico
Formazione
Competenze digitali, stanziati 48 milioni per gli Istituti tecnologici superiori
Iniziative
Digitalizzazione delle reti idriche: oltre 600 milioni per 21 progetti
Competenze e competitività
PNRR, così i fondi UE possono rilanciare la ricerca e l’Università
Finanziamenti
PNRR, si sbloccano i fondi per l’agrisolare
Sanità post-pandemica
PNRR, Missione Salute: a che punto siamo e cosa resta da fare
Strategie
Sovranità e autonomia tecnologica nazionale: come avviare un processo virtuoso e sostenibile
La relazione
Pnrr e PA digitale, l’alert della Corte dei conti su execution e capacità di spesa
L'editoriale
Elezioni 2022, la sfida digitale ai margini del dibattito politico
Strategie
Digitale, il monito di I-Com: “Senza riforme Pnrr inefficace”
Transizione digitale
Pnrr: arrivano 321 milioni per cloud dei Comuni, spazio e mobilità innovativa
L'analisi I-COM
Il PNRR alla prova delle elezioni: come usare bene le risorse e centrare gli obiettivi digitali
Cineca
Quantum computing, una svolta per la ricerca: lo scenario europeo e i progetti in corso
L'indice europeo
Desi, l’Italia scala due posizioni grazie a fibra e 5G. Ma è (ancora) allarme competenze
L'approfondimento
PNRR 2, ecco tutte le misure per cittadini e imprese: portale sommerso, codice crisi d’impresa e sismabonus, cosa cambia
Servizi digitali
PNRR e trasformazione digitale: ecco gli investimenti e le riforme previste per la digitalizzazione della PA
Legal health
Lo spazio europeo dei dati sanitari: come circoleranno le informazioni sulla salute nell’Unione Europea
Servizi digitali
PNRR e PA digitale: non dimentichiamo la dematerializzazione
Digital Healthcare transformation
La trasformazione digitale degli ospedali
Governance digitale
PA digitale, è la volta buona? Così misure e risorse del PNRR possono fare la differenza
Servizi digitali
Comuni e digitale, come usare il PNRR senza sbagliare
La survey
Pnrr e digitale accoppiata vincente per il 70% delle pmi italiane
Missione salute
Fascicolo Sanitario Elettronico alla prova del PNRR: limiti, rischi e opportunità
Servizi pubblici
PNRR: come diventeranno i siti dei comuni italiani grazie alle nuove risorse
Skill gap
PNRR, la banda ultra larga crea 20.000 nuovi posti di lavoro
Il Piano
Spazio, Colao fa il punto sul Pnrr: i progetti verso la milestone 2023
FORUMPA2022
PNRR e trasformazione digitale: rivedi i Talk di FORUM PA 2022 in collaborazione con le aziende partner
I contratti
Avio, 340 milioni dal Pnrr per i nuovi propulsori a metano
Next Generation EU
PNRR, a che punto siamo e cosa possono aspettarsi le aziende private
Fondi
Operativo il nuovo portale del MISE con tutti i finanziamenti per le imprese
Servizi comunali
Il PNRR occasione unica per i Comuni digitali: strumenti e risorse per enti e cittadini
Healthcare data platform
PNRR dalla teoria alla pratica: tecnologie e soluzioni per l’innovazione in Sanità
Skill
Competenze digitali, partono le Reti di facilitazione
Gli obiettivi
Scuola 4.0, PNRR ultima chance: ecco come cambierà il sistema formativo
Sistema Paese
PNRR 2, è il turno della space economy
FORUM PA 2022
FORUM PA 2022: la maturità digitale dei comuni italiani rispetto al PNRR
Analisi
PNRR: dalla Ricerca all’impresa, una sfida da cogliere insieme
Innovazione
Pnrr, il Dipartimento per la Trasformazione digitale si riorganizza
FORUM PA 2022
PA verde e sostenibile: il ruolo di PNRR, PNIEC, energy management e green public procurement
Analisi
PNRR, Comuni e digitalizzazione: tutto su fondi e opportunità, in meno di 3 minuti. Guarda il video!
Rapporti
Competenze digitali e servizi automatizzati pilastri del piano Inps
Analisi
Attuazione del PNRR: il dialogo necessario tra istituzioni e società civile. Rivedi lo Scenario di FORUM PA 2022
Progetti
Pnrr, fondi per il Politecnico di Torino. Fra i progetti anche IS4Aerospace
Analisi
PNRR, Colao fa il punto sulla transizione digitale dell’Italia: «In linea con tutte le scadenze»
La Svolta
Ict, Istat “riclassifica” i professionisti. Via anche al catalogo dati sul Pnrr
Analisi
Spazio, Colao fa il punto sul Pnrr: i progetti verso la milestone 2023
FORUM PA 2022
Ecosistema territoriale sostenibile: l’Emilia Romagna tra FESR e PNRR
Il Piano
Innovazione, il Mise “centra” gli obiettivi Pnrr: attivati 17,5 miliardi
Analisi
PNRR: raggiunti gli obiettivi per il primo semestre 2022. Il punto e qualche riflessione
Analisi
PNRR: dal dialogo tra PA e società civile passa il corretto monitoraggio dei risultati, tra collaborazione e identità dei luoghi
Webinar
Comuni e PNRR: un focus sui bandi attivi o in pubblicazione
Analisi
Formazione 4.0: cos’è e come funziona il credito d’imposta
PA e Sicurezza
PA e sicurezza informatica: il ruolo dei territori di fronte alle sfide della digitalizzazione
PA e sicurezza
PNRR e servizi pubblici digitali: sfide e opportunità per Comuni e Città metropolitane
Water management
Water management in Italia: verso una transizione “smart” e “circular” 
LE RISORSE
Transizione digitale, Simest apre i fondi Pnrr alle medie imprese
Prospettive
Turismo, cultura e digital: come spendere bene le risorse del PNRR
Analisi
Smart City: quale contributo alla transizione ecologica
Decarbonizzazione
Idrogeno verde, 450 milioni € di investimenti PNRR, Cingolani firma
Unioncamere
PNRR, imprese in ritardo: ecco come le Camere di commercio possono aiutare
I fondi
Industria 4.0: solo un’impresa su tre pronta a salire sul treno Pnrr
CODICE STARTUP
Imprenditoria femminile: come attingere ai fondi per le donne che fanno impresa
DECRETI
PNRR e Fascicolo Sanitario Elettronico: investimenti per oltre 600 milioni
IL DOCUMENTO
Competenze digitali, ecco il nuovo piano operativo nazionale
STRUMENTI
Da Istat e RGS gli indicatori per misurare la sostenibilità nel PNRR
STRATEGIE
PNRR – Piano nazionale di Ripresa e Resilienza: cos’è e novità
FONDI
Pnrr, ok della Ue alla seconda rata da 21 miliardi: focus su 5G e banda ultralarga
GREEN ENERGY
Energia pulita: Banca Sella finanzia i progetti green incentivati dal PNRR
TECNOLOGIA SOLIDALE
Due buone notizie digitali: 500 milioni per gli ITS e l’inizio dell’intranet veloce in scuole e ospedali
INNOVAZIONE
Competenze digitali e InPA cruciali per raggiungere gli obiettivi del Pnrr
STRATEGIE
PA digitale 2026, come gestire i fondi PNRR in 5 fasi: ecco la proposta
ANALISI
Value-based healthcare: le esperienze in Italia e il ruolo del PNRR
Strategie
Accordi per l’innovazione, per le imprese altri 250 milioni
Strategie
PNRR, opportunità e sfide per le smart city
Strategie
Brevetti, il Mise mette sul piatto 8,5 milioni
Strategie
PNRR e opere pubbliche, la grande sfida per i Comuni e perché bisogna pensare digitale
Formazione
Trasferimento tecnologico, il Mise mette sul piatto 7,5 milioni
Strategie
PSN e Strategia Cloud Italia: a che punto siamo e come supportare la PA in questo percorso
Dispersione idrica
Siccità: AI e analisi dei dati possono ridurre gli sprechi d’acqua. Ecco gli interventi necessari
PNRR
Cloud, firmato il contratto per l’avvio di lavori del Polo strategico
Formazione
Competenze digitali, stanziati 48 milioni per gli Istituti tecnologici superiori
Iniziative
Digitalizzazione delle reti idriche: oltre 600 milioni per 21 progetti
Competenze e competitività
PNRR, così i fondi UE possono rilanciare la ricerca e l’Università
Finanziamenti
PNRR, si sbloccano i fondi per l’agrisolare
Sanità post-pandemica
PNRR, Missione Salute: a che punto siamo e cosa resta da fare
Strategie
Sovranità e autonomia tecnologica nazionale: come avviare un processo virtuoso e sostenibile
La relazione
Pnrr e PA digitale, l’alert della Corte dei conti su execution e capacità di spesa
L'editoriale
Elezioni 2022, la sfida digitale ai margini del dibattito politico
Strategie
Digitale, il monito di I-Com: “Senza riforme Pnrr inefficace”
Transizione digitale
Pnrr: arrivano 321 milioni per cloud dei Comuni, spazio e mobilità innovativa
L'analisi I-COM
Il PNRR alla prova delle elezioni: come usare bene le risorse e centrare gli obiettivi digitali
Cineca
Quantum computing, una svolta per la ricerca: lo scenario europeo e i progetti in corso
L'indice europeo
Desi, l’Italia scala due posizioni grazie a fibra e 5G. Ma è (ancora) allarme competenze
L'approfondimento
PNRR 2, ecco tutte le misure per cittadini e imprese: portale sommerso, codice crisi d’impresa e sismabonus, cosa cambia
Servizi digitali
PNRR e trasformazione digitale: ecco gli investimenti e le riforme previste per la digitalizzazione della PA
Legal health
Lo spazio europeo dei dati sanitari: come circoleranno le informazioni sulla salute nell’Unione Europea
Servizi digitali
PNRR e PA digitale: non dimentichiamo la dematerializzazione
Digital Healthcare transformation
La trasformazione digitale degli ospedali
Governance digitale
PA digitale, è la volta buona? Così misure e risorse del PNRR possono fare la differenza
Servizi digitali
Comuni e digitale, come usare il PNRR senza sbagliare
La survey
Pnrr e digitale accoppiata vincente per il 70% delle pmi italiane
Missione salute
Fascicolo Sanitario Elettronico alla prova del PNRR: limiti, rischi e opportunità
Servizi pubblici
PNRR: come diventeranno i siti dei comuni italiani grazie alle nuove risorse
Skill gap
PNRR, la banda ultra larga crea 20.000 nuovi posti di lavoro
Il Piano
Spazio, Colao fa il punto sul Pnrr: i progetti verso la milestone 2023
FORUMPA2022
PNRR e trasformazione digitale: rivedi i Talk di FORUM PA 2022 in collaborazione con le aziende partner
I contratti
Avio, 340 milioni dal Pnrr per i nuovi propulsori a metano
Next Generation EU
PNRR, a che punto siamo e cosa possono aspettarsi le aziende private
Fondi
Operativo il nuovo portale del MISE con tutti i finanziamenti per le imprese
Servizi comunali
Il PNRR occasione unica per i Comuni digitali: strumenti e risorse per enti e cittadini
Healthcare data platform
PNRR dalla teoria alla pratica: tecnologie e soluzioni per l’innovazione in Sanità
Skill
Competenze digitali, partono le Reti di facilitazione
Gli obiettivi
Scuola 4.0, PNRR ultima chance: ecco come cambierà il sistema formativo
Sistema Paese
PNRR 2, è il turno della space economy
FORUM PA 2022
FORUM PA 2022: la maturità digitale dei comuni italiani rispetto al PNRR
Analisi
PNRR: dalla Ricerca all’impresa, una sfida da cogliere insieme
Innovazione
Pnrr, il Dipartimento per la Trasformazione digitale si riorganizza
FORUM PA 2022
PA verde e sostenibile: il ruolo di PNRR, PNIEC, energy management e green public procurement
Analisi
PNRR, Comuni e digitalizzazione: tutto su fondi e opportunità, in meno di 3 minuti. Guarda il video!
Rapporti
Competenze digitali e servizi automatizzati pilastri del piano Inps
Analisi
Attuazione del PNRR: il dialogo necessario tra istituzioni e società civile. Rivedi lo Scenario di FORUM PA 2022
Progetti
Pnrr, fondi per il Politecnico di Torino. Fra i progetti anche IS4Aerospace
Analisi
PNRR, Colao fa il punto sulla transizione digitale dell’Italia: «In linea con tutte le scadenze»
La Svolta
Ict, Istat “riclassifica” i professionisti. Via anche al catalogo dati sul Pnrr
Analisi
Spazio, Colao fa il punto sul Pnrr: i progetti verso la milestone 2023
FORUM PA 2022
Ecosistema territoriale sostenibile: l’Emilia Romagna tra FESR e PNRR
Il Piano
Innovazione, il Mise “centra” gli obiettivi Pnrr: attivati 17,5 miliardi
Analisi
PNRR: raggiunti gli obiettivi per il primo semestre 2022. Il punto e qualche riflessione
Analisi
PNRR: dal dialogo tra PA e società civile passa il corretto monitoraggio dei risultati, tra collaborazione e identità dei luoghi
Webinar
Comuni e PNRR: un focus sui bandi attivi o in pubblicazione
Analisi
Formazione 4.0: cos’è e come funziona il credito d’imposta
PA e Sicurezza
PA e sicurezza informatica: il ruolo dei territori di fronte alle sfide della digitalizzazione
PA e sicurezza
PNRR e servizi pubblici digitali: sfide e opportunità per Comuni e Città metropolitane
Water management
Water management in Italia: verso una transizione “smart” e “circular” 
LE RISORSE
Transizione digitale, Simest apre i fondi Pnrr alle medie imprese
Prospettive
Turismo, cultura e digital: come spendere bene le risorse del PNRR
Analisi
Smart City: quale contributo alla transizione ecologica
Decarbonizzazione
Idrogeno verde, 450 milioni € di investimenti PNRR, Cingolani firma
Unioncamere
PNRR, imprese in ritardo: ecco come le Camere di commercio possono aiutare
I fondi
Industria 4.0: solo un’impresa su tre pronta a salire sul treno Pnrr

Articoli correlati